

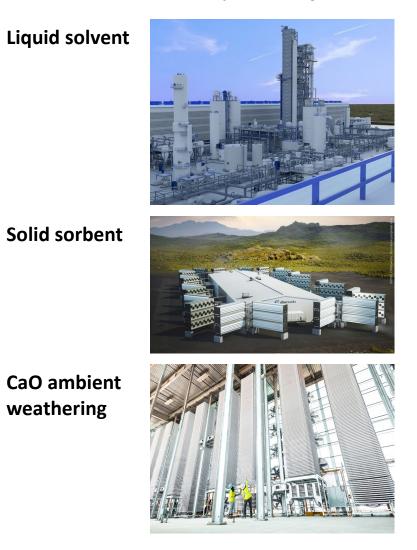
## CDR and ETS: Considerations on Direct Air Carbon Capture and Storage (DACCS)

Prof. Dr. Bjarne Steffen

Ariadne @ Brussels, 6 Dec 2023

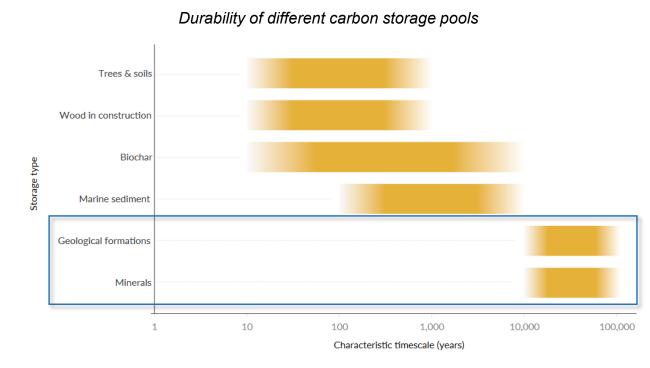
## Agenda

- 1. Role of DACCS for net zero
- 2. DACCS and ETS integrity
- 3. Current and future cost of DACCS, vis-à-vis EU ETS
- 4. Funding of DACCS removals and the role of EU ETS
- 5. Conclusion


## 1. Role of DACCS for net zero

- Deep decarbonization the foundation for all climate change mitigation efforts
- Ad per IPCC AR6, 1.5–2°C pathways also require large amounts of CDR
- Land-based CDR expected to saturate by mid-century
- **DACCS** with potential for scalable and permanent CDR
- Deployment started driven by voluntary markets, though to date high costs hinder large-scale deployment



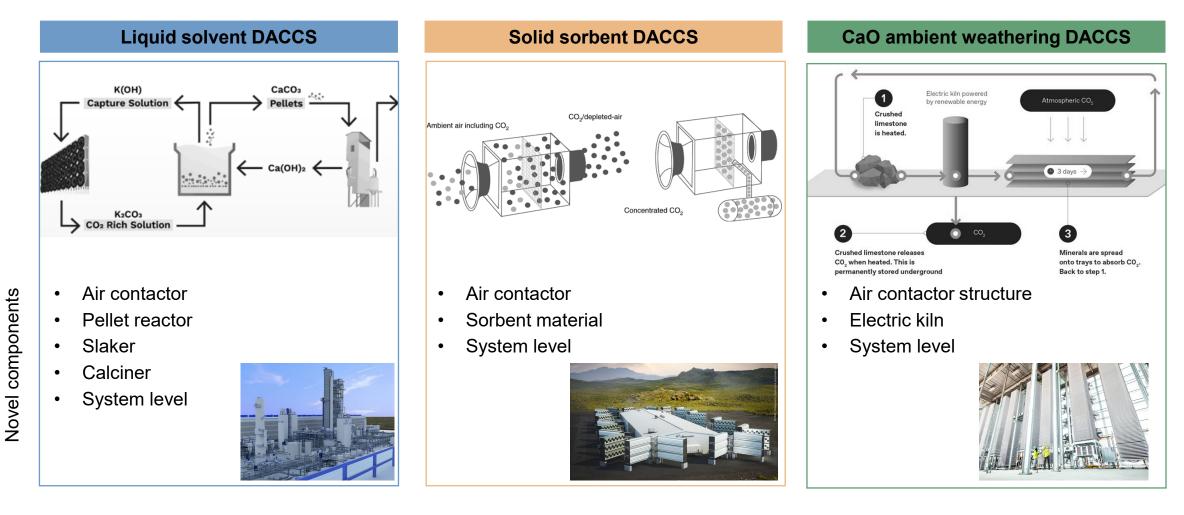

Source (chart bottom left): World Economic Forum (2023), The Voluntary Carbon Market: Climate Finance at an Inflection Point

Key technologies



## 2. DACCS and ETS integrity

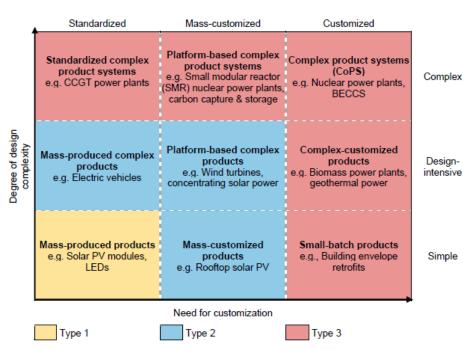
- Durability and MRV
- Scalability
- Cost?



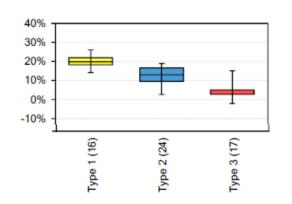

Source: IPCC WG3 AR6, chapter 12, table 12.6. Smith, S. M. et al. (2023). The State of Carbon Dioxide Removal, doi:10.17605/OSF.IO/W3B4Z.

| CDR method                                                     | Status<br>(TRL) | Mitigation<br>Potential<br>(GtCO <sub>2</sub> yr <sup>-1</sup> ) | Risk and impacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------|-----------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DACCS                                                          | 6               | 5-40                                                             | Increased energy and water use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Enhanced<br>weathering                                         | 3-4             | 2-4 (<1-95)                                                      | Mining impacts; air quality impacts of rock<br>dust when spreading on soil                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ocean alkalinity<br>enhancement                                | 1–2             | 1–100                                                            | Increased seawater pH and saturation state<br>may impact marine biota. Possible release of<br>nutritive or toxic elements and compounds.<br>Mining impacts                                                                                                                                                                                                                                                                                                                                                                            |
| Ocean<br>fertilisation                                         | 1–2             | 1–3                                                              | Nutrient redistribution, restructuring of the<br>ecosystem, enhanced oxygen consumption<br>and achification in deeper waters, potentia<br>for decadal-o-millennial-scale return to the<br>atmosphere of nearly all the extra carbon<br>removed, risks of unintended side effects                                                                                                                                                                                                                                                      |
| Blue carbon<br>management<br>In coastal<br>ecosystems          | 2-3             | <1                                                               | If degraded or lost, coastal blue carbon<br>ecosystems are likely to release most of the<br>carbon back to the almosphere, potential<br>for sediment contaminants, toxicity,<br>bioaccumulation and biomagnification<br>in organism; tssues related to altering<br>degradability of coastal plants; use of<br>subtidal areas for tidal wetland carbon<br>removal; effect of shoreline modifications<br>on sediment redeposition and natural mars<br>as means to reclaim land for purposes that<br>degrade capacity for carbon removal |
| BECCS                                                          | 5-6             | 0.5–11                                                           | Competition for land and water resources,<br>to grow biomass feedstock. Biodiversity<br>and carbon stock loss If from unsustainable<br>biomass harvest                                                                                                                                                                                                                                                                                                                                                                                |
| Afforestation/<br>reforestation                                | 8-9             | 0.5–10                                                           | Reversal of carbon removal through wildfire<br>disease, pests may occur.<br>Reduced catchment water yield and lower<br>groundwater level if species and biome<br>are inappropriate                                                                                                                                                                                                                                                                                                                                                    |
| Biochar                                                        | 67              | 0.3-6.6                                                          | Particulate and GHG emissions from<br>production; biodiversity and carbon stock<br>loss from unsustainable biomass harvest                                                                                                                                                                                                                                                                                                                                                                                                            |
| Soil carbon<br>sequestration<br>In croplands<br>and grasslands | 8-9             | 0.6-9.3                                                          | Risk of increased nitrous oxide<br>emissions due to higher levels of organic<br>nitrogen in the soil; risk of reversal<br>of carbon sequestration                                                                                                                                                                                                                                                                                                                                                                                     |
| Peatland and<br>coastal wetland<br>restoration                 | 8-9             | 0.5–2.1                                                          | Reversal of carbon removal in drought<br>or future disturbance. Risk of increased<br>methane emissions                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Agroforestry                                                   | 8-9             | 0.3–9.4                                                          | Risk that some land area lost from food<br>production; requires high skills                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Improved forest<br>management                                  | 8-9             | 0.1–2.1                                                          | If improved management is understood<br>as merely intensification involving<br>increased fertiliser use and introduced<br>species, then It could reduce biodiversity<br>and increase eutrophication                                                                                                                                                                                                                                                                                                                                   |

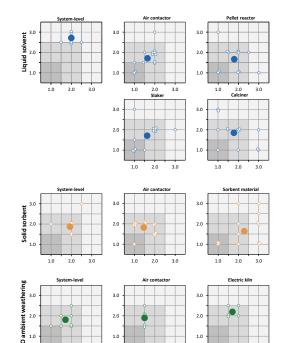
### **ETH***zürich* Prof. Dr. Bjarne Steffen, Climate Finance and Policy Group


a. Decomposition of cost components




Sources for process figures: Deutz et al. (2021); https://climatescience.org/advanced-direct-air-capture; Heirloom (2022)

b. Component-level assessment of cost reduction potential


### Typology of energy technologies



### Learning rate estimates of different tech types

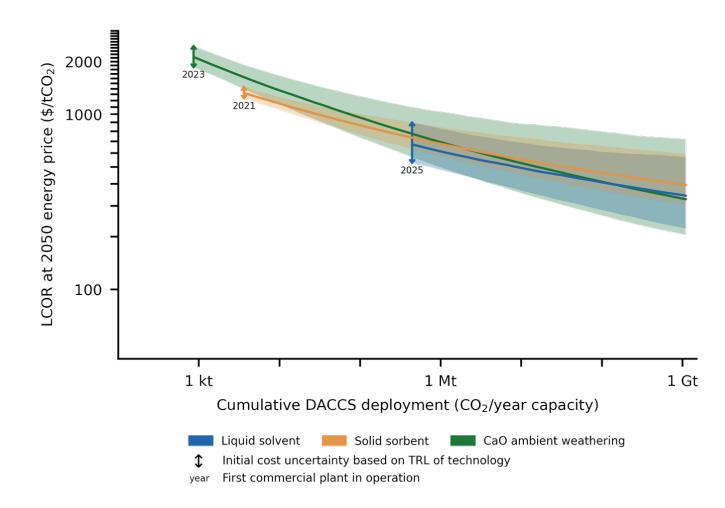


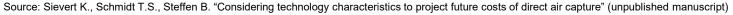
# Classification of DACCS technologies



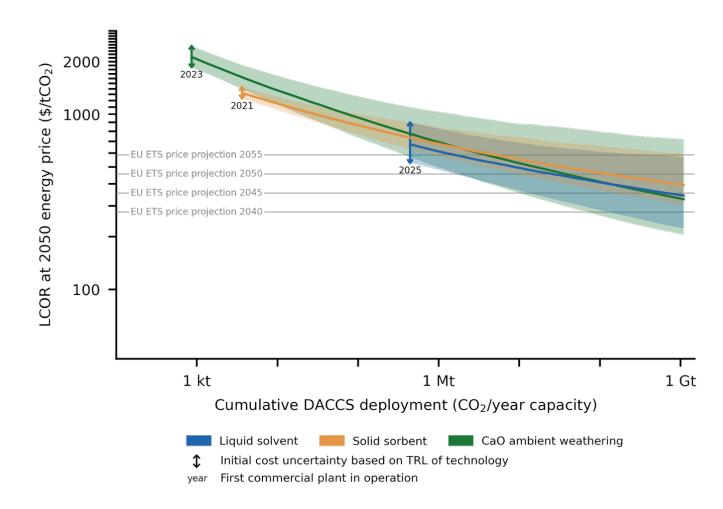
2.0 3.0

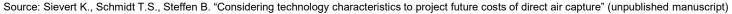
1.0


1.0 2.0 3.0




1.0 2.0 3.0


Source: Malhotra, A., Schmidt, T.S. "Accelerating Low-Carbon Innovation" Joule 4 (2020); Sievert K., Schmidt T.S., Steffen B. "Considering technology characteristics to project future costs of direct air capture" (unpublished manuscript)

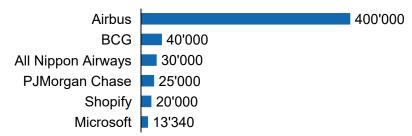

c. Projection of Levelized Cost of Carbon Removal





c. Projection of Levelized Cost of Carbon Removal






## 4. Funding of DACCS removals and the role of EU ETS

## Today: Voluntary (prestige) markets

- Advanced market commitments
  - Started 2019 by Stripe, Shopify, Swiss Re, BCG
  - In 2020 billion-scale pledges by Microsoft and Bezos
- Over-the-counter, often non-disclosed USD/ton. Partly bundled with corporate investments and other services

#### Top buyers of DACCS offsets by Aug 2023 (tons)



Source (bottom left): Bloomberg New Energy Finance

### **Today: Public support**

- Tax credits (examples)
  - United States 45Q: 180 \$/t (stored)
  - Canada: 60% of DACCS investment
  - Norway: 186 \$/t
- R&D grants
  - United States
    regional DAC hubs
    (3.5 bn \$ for 4 hubs)
  - EU Innovation Fund, Horizon Europe

## Future: A role for EU ETS?

- <u>Mid-term</u>: emissions and removal trading system
  (*ERTS*) could
  - efficiently trade DACCS vs. very costly abatement
  - Procure CDR for overshoot
- <u>Short-term</u>: show pathway for DACCS removal offtake in compliance market
  - Certainty for investment in corporates and projects
  - Creating "lower bound" of revenues → bankability

## 5. Conclusion

- CDR important element to reach 1.5–2°C pathways, adding to indispensable deep decarbonization
- DACCS a durable and scalable solution, together with BECCS structurally different from other CDR
- At 1 Gt cumulative deployment, levelized cost of CO<sub>2</sub> removal in the magnitude of 250–450 \$/tCO<sub>2</sub> seem likely, thus not jeopardizing most decarbonization options
- Early deployment of DACCS driven by VCM and subsidies a perspective for being part of an ERTS could provide a revenue baseline from compliance markets, improving investability and bankability